The search functionality is under construction.

Keyword Search Result

[Keyword] visible light communication(24hit)

21-24hit(24hit)

  • 6-Axis Sensor Assisted Low Complexity High Accuracy-Visible Light Communication Based Indoor Positioning System

    Chinnapat SERTTHIN  Tomoaki OHTSUKI  Masao NAKAGAWA  

     
    PAPER

      Vol:
    E93-B No:11
      Page(s):
    2879-2891

    The authors focus on the improvement of Visible Light Communication Identification (VLID) system that provides positioning information via LED light bulb, which is a part of Visible Light Communication (VLC) system. The conventional VLID system provides very low positioning estimation accuracy at room level. In our approach, neither additional infrastructure nor modification is required on the transmitter side. On the receiver side, 6-axis sensor is embedded to provide 3-axis of Azimuth and 3-axis of Tilt angulations information to perform positioning estimation. We verify the proposed system characteristics by making both empirical and numerical analysis, to confirm the effectiveness of proposed system. We define two words to justify the characteristic of the proposed system, which are Field-of-View (FOV: ψc) Limit and Sensitivity (RXS) Limit. Both FOV and Sensitivity Limits have crucial impact on positioning estimation accuracy. Intuitively, higher positioning accuracy can be achieved with smaller FOV configuration in any system that has FOV. Conversely, based on system characteristics of VLID, we propose a positioning estimation scheme, namely Switching Estimated Receiver Position (SwERP) yields high accuracy even with wide FOV configuration. Cumulative Distribution Function (CDF) of error distance and Root Mean Square of Error Distance (RMSED) between experimental positions and estimated receiver positions are used to indicate the system performance. We collected 440 samples from 3 receivers' FOV configurations altogether 1320 samples within the experimental area of 1200 mm5000 mm2050 mm. The results show that with the proposed scheme, the achievable RMSEDs are in the range of 298 and 463 mm under different FOV configurations, which attained the maximum accuracy improvement over 80% comparing to the one without positioning estimation scheme. The proposed system's achievable accuracy does not depend on transmitters' orientation; only one transmitter is required to perform positioning estimation.

  • Experimental Results on Simple Distributed Cooperative Transmission Scheme with Visible Light Communication

    Takaya YAMAZATO  Koji NAKAO  Hiraku OKADA  Masaaki KATAYAMA  

     
    LETTER

      Vol:
    E93-B No:11
      Page(s):
    2959-2962

    We consider a distributed transmission of data packet to a sink where the distance of a sensor node to a sink is much longer than the maximum communication range of each sensor node. We give a simple modification to the transmitter, i.e., multiplication of random phase before the transmission. Thanks to Turbo Code, it is possible to extend the transmission range as the received amplitude varies symbol by symbol for our scheme while whole data packet may be lost for the conventional scheme. In this letter, we report the experimental results of our scheme equivalently developed using visible light communication.

  • Research of Practical Indoor Guidance Platform Using Fluorescent Light Communication

    Xiaohan LIU  Hideo MAKINO  Suguru KOBAYASHI  Yoshinobu MAEDA  

     
    PAPER

      Vol:
    E91-B No:11
      Page(s):
    3507-3515

    This article presents an indoor positioning and communication platform, using fluorescent lights. We set up a practical implementation of a VLC (Visible Light Communication) system in a University building. To finalize this work, it is important that we analyze the properties of the reception signal, especially the length of the data string that can be received at different walking speed. In this paper, we present a model and a series of formulae for analyzing the relationship between positioning signal availability and other important parameters, such as sensor angle, walking speed, data transmission rate, etc. We report a series of real-life experiments using VLC system and compare the results with those generated by the formula. The outcome is an improved design for determination of the reception area with more than 97% accurate signals, and an optimal transmission data length, and transmission rate.

  • Indoor Visible Light Data Transmission System Utilizing White LED Lights

    Yuichi TANAKA  Toshihiko KOMINE  Shinichiro HARUYAMA  Masao NAKAGAWA  

     
    PAPER-Optical Wireless Communications

      Vol:
    E86-B No:8
      Page(s):
    2440-2454

    Future electric lights will be comprised of white LEDs (Light Emitting Diodes). White LEDs with a high power output are expected to serve in the next generation of lamps. In this paper, an indoor visible data transmission system utilizing white LED lights is proposed. In the proposed system, these devices are used not only for illuminating rooms but also for an optical wireless communication system. This system is suitable for private networks such as consumer communication networks. However, it remains necessary to investigate the properties of white LEDs when they are used as optical transmitters. Based on numerical analyses and computer simulations, it was confirmed that the proposed system could be used for indoor optical transmission.

21-24hit(24hit)